Cmpower ${ }_{\text {FIber }}{ }^{\circledR}$

EPB-53M1x-L2x(D)
 155M~1.25Gbps SFP Bi-Directional Transceiver, 20km Reach 1550nm TX / 1310 nm RX

Features

- Multi-rate of $155 \mathrm{M} \sim 1.25 \mathrm{Gbps}$ operation
- 1550nm DFB laser and PIN photodetector for 20km transmission
- Compliant with SFP MSA and SFF-8472 with simplex LC or SC receptacle
- Digital Diagnostic Monitoring:

Internal Calibration or External Calibration

- Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- +3.3 V single power supply
- Operating case temperature range of
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial) or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial)

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Description

The SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of $1.25 \mathrm{Gbps} / 1.0625 \mathrm{Gbps}$ and 20 km transmission distance with SMF
The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.
The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	${ }^{\circ} \mathrm{C}$
Operating Humidity	-	5	85	$\%$

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Commercial	Tc	0		+70	${ }^{\circ} \mathrm{C}$
	Industrial		-40		+85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Power Supply Current	Icc			300	mA	
Data Rate		155		1250	Mbps	

Cempowerfiber ${ }^{\circledR}$

Optical and Electrical Characteristics

Parameter		Symbol	Min	Typical	Max	Unit	Notes
Transmitter							
Centre Wavelength		λc	1530	1550	1570	nm	
Spectral Width (-20dB)		$\Delta \lambda$			1	nm	
Side Mode Suppression Ratio		SMSR	30			dB	
Average Output Power		Pout	-9		0	dBm	1
Extinction Ratio		ER	9			dB	
Optical Rise/Fall Time (20\% ${ }^{\text {(}}$ 80\%)		$\mathrm{tr}_{\text {/ } / t_{f}}$			0.26	ns	
Data Input Swing Differential		VIN	400		1800	mV	2
Input Differential Impedance		ZIN	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
	Normal		0		0.8	V	
Receiver							
Centre Wavelength		λc	1260		1360	nm	
Receiver Sensitivity					-23	dBm	3
Receiver Overload			-3			dBm	3
LOS De-Assert		LOSD			-24	dBm	
LOS Assert		LOS $_{\text {A }}$	-35			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swing Differential		Vout	400		1800	mV	4
LOS		High	2.0		Vcc	V	
		Low			0.8	V	

Notes:

1. The optical power is launched into SMF.
2. PECL input, internally AC-coupled and terminated.
3. Measured with a PRBS $2^{7}-1$ test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.
4. Internally AC-coupled.

Empower ${ }^{\text {FIBER }}{ }^{\circledR}$

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	$\mu \mathrm{s}$
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	$\mu \mathrm{s}$
Tx Disable To Reset	t_reset	10			$\mu \mathrm{s}$
LOS Assert Time	t_loss_on			100	$\mu \mathrm{s}$
LOS De-assert Time	t_loss_off			100	$\mu \mathrm{s}$
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V H	2		Vcc	V
MOD_DEF (0:2)-Low	V ${ }_{\text {L }}$			0.8	V

Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70			
告 C	$\pm 3^{\circ} \mathrm{C}$	Internal / External		
Voltage	-40 to +85	V	$\pm 3 \%$	Internal / External
Bias Current	3.0 to 3.6	0 to 100	mA	$\pm 10 \%$
Internal / External				
TX Power	-9 to 0	dBm	$\pm 3 \mathrm{~dB}$	Internal / External
RX Power	-23 to -3	dBm	$\pm 3 \mathrm{~dB}$	Internal / External

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

2 wire address 1010000X (A0h)		2 wire address 1010001X (A2h)	
95		5	Alarm and Warning Thresholds (56 bytes)
	P MSA (96 bytes)	95	Cal Constants (40 bytes)
	Vendor Specific		Real Time Diagnostic Interface (24 bytes)
		127	Vendor Specific (8 bytes)
127	Reserved in SFP MSA (128 bytes)		User Writable EEPROM (120 bytes)
255			Vendor Specific (8 bytes)

Pin Definitions

Pin Diagram

20 VeeT 19 TD- 18 TD + 		12	VeeT	
		TxFault		
		3	Tx Disable	
17	VeeT		4	MOD-DEF(2)
16	VccT	5	MOD-DEF(1)	
15	VccR	6	MOD-DEF(0)	
14	VeeR	7	Rate Select	
13	RD+	8	LOS	
12	RD-	9	VeeR	
11	VeeR	10	VeeR	
	Top of Board		m of Board (thru top of bo	

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	$V_{\text {EET }}$	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TXDISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	Veer	Receiver ground	1	
10	Veer	Receiver ground	1	
11	Veer	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	Veer	Receiver ground	1	
15	VCCR	Receiver Power Supply	2	
16	Vcct	Transmitter Power Supply	2	
17	Veet	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeEt	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

1) TX Fault is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board to a voltage between 2.0 V and $\mathrm{Vcc}+0.3 \mathrm{~V}$. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8 V .
2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor. Its states are:
Low (0 to 0.8 V): Transmitter on
($>0.8 \mathrm{~V},<2.0 \mathrm{~V}$):
Undefined
High (2.0 to 3.465 V): Transmitter Disabled
Open: Transmitter Disabled
3) Mod-Def $0,1,2$. These are the module definition pins. They should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
Mod-Def 0 is grounded by the module to indicate that the module is present
Mod-Def 1 is the clock line of two wire serial interface for serial ID
Mod-Def 2 is the data line of two wire serial interface for serial ID
4) LOS is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor. Pull up voltage between 2.0 V and $\mathrm{Vcc}+0.3 \mathrm{~V}$. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8 V .
5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

www.empowerfiber.com
Mechanical Dimensions
A. LC

Compower ${ }_{\text {Fiber }}{ }^{R}$

B. SC

Cempower Fiber $^{\circledR}$

Regulatory Compliance

Empowerfiber SFP-BIDI transceiver is designed to be Class I Laser safety compliant and is certified per the following standards:

Feature	Agency	Standard	Certificate / Comments
Laser Safety	FDA	CDRH 21 CFR 1040 annd Laser Notice No. 50	1120289-000
Product Safety	BST	EN 60825-1: 2007 EN 60825-2: 2004 EN 60950-1: 2006	BT0905142009
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ0902008347/CHEM
EMC	WALTEK	EN 55022:2006+A1:2007 EN 55024:1998+A1+A2:2003 -	WT10093768-D-E-E

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by empowerfiber before they become applicable to any particular order or contract. In accordance with the empowerfiber policy of continuous improvement specifications may change without notice.
The publication of information in this data sheet does not imply freedom from patent or other protective rights of empowerfiber or others. Further details are available from any empowerfiber sales representative. sales@empowerfiber.com.
Web http://www.empowerfiber.com

